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Abstract— In this letter, a new full-wave inversion (FWI)
scheme is proposed to reconstruct multiple dielectric para-
meters of 3-D arbitrary anisotropic objects buried in layered
media. Three inverse solvers, including the isotropic one, biaxial
anisotropic one, and the arbitrary anisotropic one, are cascaded
sequentially. The dielectric parameters obtained by the first
solver are used as the initial values of the next solver. Meanwhile,
the inversion domain is synchronously downsized on the basis of
discrepancies between the inverted dielectric parameters and the
background ones. Numerical simulations show that, compared
with the direct arbitrary anisotropic inverse solver, the cascading
inversion scheme not only can produce more reliable recon-
structed profiles but also significantly lowers the computational
cost. In addition, the antinoise ability of the cascaded solvers is
also tested.

Index Terms— Arbitrary anisotropy, cascaded inverse solvers,
full-wave inversion (FWI).

I. INTRODUCTION

ELECTROMAGNETIC (EM) inverse scattering is to
reconstruct shapes, positions, dielectric parameters, and

others of unknown objects located in a region of interest
from the measured EM data. It has wide applications in
geophysical exploration [1], biomedical imaging [2], through-
wall imaging [3], and so on.

The inverse scattering methods can be roughly categorized
into the model-based inversion and the voxel-based inversion
according to the availability of a priori information [4].
Compared with the model-based inversion, the voxel-based
inversion requires the inversion domain to be discretized. This
often generates a huge number of unknowns in 3-D inversion
problems and results in severe ill-posedness. However, its
advantage is that the model parameters of scatterers are
allowed to have arbitrary spatial distribution in the inversion
domain. Meanwhile, no a priori information is required.
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Therefore, the voxel-based inversion has intensively attracted
the attention of researchers in the past decades, and several
full-wave inversion (FWI) methods have been proposed. For
example, the Born iterative method (BIM) iteratively solves the
state equation in the forward scattering and the data equation in
the inverse scattering [5]. The total field in the current iteration
is replaced by that obtained in the last iteration to linearize the
data equation. The distorted BIM (DBIM) [6] and variational
BIM (VBIM) [7] are the variants of BIM and also have
wide applications. Different from BIM, the contrast source
inversion (CSI) has no forward computation and the cost
function is constructed using the summation of mismatches in
the data equation and the state equation. The subspace-based
optimization method (SOM) [8] is implemented similar to CSI
but for a subspace of the induced current.

In most previous works related to 3-D EM FWI, the afore-
mentioned methods are applied to the reconstruction of
isotropic objects. However, 3-D anisotropy is common in
engineering applications, e.g., geophysical prospecting [9] and
composite material imaging [10]. Unfortunately, because mul-
tiple dielectric parameters in a single discretized cell are recon-
structed simultaneously in the 3-D voxel-based anisotropic
inversion, the underdetermination becomes quite severe. In this
work, we mitigate the underdetermination for the inversion
of arbitrary anisotropic objects by cascading three inverse
solvers and downsizing the inversion domain step by step.
First, the isotropic inverse solver reconstructs the approximate
isotropic dielectric parameters. These isotropic values will be
used as the initial values of the biaxial anisotropic inverse
solver. Meanwhile, the inversion domain is downsized by
measuring the discrepancies between the reconstructed para-
meters and the corresponding background parameters with
a threshold. Then, a similar process will also be used to
bridge the biaxial anisotropic inverse solver and the arbitrary
anisotropic one and to further compress the inversion domain.
As a consequence, the unknowns of the discretized data
equation decrease, the convergence of the iteration becomes
faster, and the solution is more accurate.

The organization of this letter is as follows. In Section II,
the 3-D EM forward and inversion models for FWI are
briefly formulated. Then, the cascading scheme for three
types of inverse solvers is described in detail. In Section III,
a numerical example is used to verify the superiority of the
proposed scheme. Finally, in Section IV, the conclusion is
drawn.
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II. THEORY AND METHODS

A. Forward and Inversion Models

The forward scattering of 3-D objects with arbitrary
anisotropy embedded in layered media is formulated by the
electric field integral equation (EFIE)

Einc(r) = Etot(r)

− jωε0

∫
D

GEJ(r, r′)
[
εs(r′) − εb(r′)

]
Etot(r′)dr′ (1)

where Einc is the incident field in the inversion domain D
when the anisotropic scatterer is absent and Etot is the total
field when the scatterer is present. GEJ is the dyadic Green’s
function (DGF) in layered media [11] linking the source point
r′ and the field point r. εs and εb are the relative complex
permittivity of the scatterer and the background medium,
respectively. Their detailed expressions can be found in [12]
and [13]. The inversion model is formulated by the data
equations

Esct(r) = jωε0

∫
D

GEJ(r, r′)
[
εs(r′) − εb(r′)

]
Etot(r′)dr′

(2a)

Hsct(r) = jωε0

∫
D

GHJ(r, r′)
[
εs(r′) − εb(r′)

]
Etot(r′)dr′

(2b)

where Esct and Hsct are the scattered electric field and mag-
netic field measured at the receiver array, respectively. In the
forward computation, (1) is discretized and Etot is solved
by the stabilized biconjugate-gradient fast Fourier transform
(BCGS-FFT). In the inversion, (2) is discretized and VBIM
is adopted to solve εs . This alternative iteration continues
until the data misfit between the measured scattered field
and that computed by (2) reaches a stop criterion. Details
of BCGS-FFT and VBIM for arbitrary anisotropic scatterers
can be found in [14]. One should note that (1) and (2) can
easily degenerate into the formulas for the scattering and
inverse scattering of biaxial anisotropic and isotropic objects.
The implementation of BCGS-FFT and VBIM for biaxial
and isotropic scatterers is given in [15] and [6]. In addition,
we only consider the nonmagnetic scatterers, and εs of the
arbitrary anisotropic scatterer is symmetrical [12]. Therefore,
there are twelve unknowns (six for permittivity and six for
conductivity) for arbitrary anisotropic scatterers, six unknowns
(three for permittivity and three for conductivity) for biaxial
scatterers, and two unknowns (one for permittivity and one for
conductivity) for isotropic scatterers to reconstruct.

B. Cascading Scheme of Three Inverse Solvers

Direct inversion of 12 unknowns of arbitrary anisotropic
scatterers by VBIM is challenging due to the strong ill-
posedness of inverse scattering problems [14]. Therefore,
we first use the isotropic inverse solver to find the approximate
model parameters, e.g., isotropic permittivity and conductivity,
of the arbitrary anisotropic scatterers. Because there are only
two model parameters to reconstruct in each discretized cell,

Fig. 1. Cross-well model. (Left) Illustration of the model and (Right) location
sketch of the boreholes in the xy plane.

the ill-posedness is significantly alleviated. Then, we judge the
kth discretized cell as “background” by using

|ξ k
i − ξb|
|ξb| ≤ th (3)

and remove it from the inversion domain. ξ k
i is the inverted

model parameter in the kth cell and ξb is the background
model parameter of the inversion domain. The parameter
th is an empirical but small threshold value. Equation (3)
means that a certain cell will be treated as “background”
and removed if the reconstructed model parameter in that
cell is approaching the background model parameter. The
word “remove” means that the unknowns in the confirmed
“background” cell will be discarded in the discretized data
equations and the corresponding row vectors in the Fréchet
derivative matrix in the inversion are deleted. In this way,
the inversion domain is compressed and the computational cost
is also lowered. In the next step, we use the reconstructed
isotropic model parameters as initial values of the biaxial
anisotropic inverse solver and implement the reconstruction in
the downsized inversion domain. Although there are six model
parameters to reconstruct in each discretized cell, the ill-
posedness is not severe because the inversion domain has
been compressed. Finally, the arbitrary anisotropic inversion
is implemented following the similar procedure. Two points
must be emphasized here: 1) if there are multiple dielectric
parameters to reconstruct for a certain discretized cell, (3) must
be satisfied for all the parameters simultaneously and 2) if ξb

is zero for a certain dielectric parameter, it will not be used
in (3) to judge the “background” cell.

III. NUMERICAL RESULTS

In this section, we apply the proposed scheme to a
cross-well model to reconstruct 12 anisotropic parameters
simultaneously. The empirical threshold th in (3) is set as 0.1.

A. Model Configuration

As shown in Fig. 1, a cube and a sphere are buried in the
well. The sizes of the inversion domain and two objects are
labeled. Before rotation of the optical axes of two objects,
the dielectric parameters of the cube are

εs1 = diag{2.5, 2.3, 2.6} σ s1 = diag{7, 8, 13} mS/m (4)
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TABLE I

RELATIVE PERMITTIVITY AND CONDUCTIVITY OF THE CUBE AND SPHERE WITH ARBITRARY ANISOTROPY

Fig. 2. Reconstructed isotropic profiles. (a) Permittivity. (b) Conductivity.

and those of the sphere are

εs2 = diag{3.3, 3.0, 2.8} σ s2 = diag{11, 12, 10} mS/m. (5)

The rotation angles of optical axes of both the cube and
sphere are φ1 = 30◦ and φ2 = 45◦ (see [13, Fig. 2]). Their
dielectric parameters after the rotation of optical axes are listed
in Table I. In addition, one should note that the background
medium is homogeneous with the parameter εb = 2.0 and
σb = 2.0 mS/m. Seventeen receivers and sixteen transmitters
are placed in each borehole. Eight boreholes are drilled around
the inversion domain, and the locations are shown in the right
part of Fig. 1. The operating frequency is 250 MHz. All the
simulations are performed on a workstation with 20-core
Xeon E2650 v3 2.3G CPU, 512-GB RAM. All the measured
scattered field data are synthesized by the BCGS-FFT forward
solver.

B. Comparison Between the Cascading Scheme and
the Direct Inversion

We first employ the cascading scheme to reconstruct the
arbitrary anisotropic objects. The inverted profiles by the
isotropic inverse solver are shown in Fig. 2. We can see that
the solver only finds the approximate locations of two objects.
The reconstructed shape of the cube is close to a sphere. The
inverted dielectric parameters of the sphere are far from the
ground truth. Then, we apply (3) to the inversion results and
remove partial “background” cells to downsize the inversion
domain. In the second step, we treat the unknown objects as
biaxial anisotropic ones and use the inversion results from the
isotropic solver as the initial profiles and perform the VBIM
inversion. The results are shown in Fig. 3. Compared with
the profiles shown in Fig. 2, the retrieved permittivity and
conductivity values of the sphere become larger, which are
closer to the ground truth. Meanwhile, because partial “back-
ground” cells are removed, the boundary of the reconstructed

Fig. 3. Reconstructed biaxial anisotropic profiles. (a)–(c) Permittivities.
(d)–(f) Conductivities.

cube becomes sharper. Then, in the final step, we remove
partial “background” cells once more based on the results of
the biaxial inverse solver and reconstruct 12 model parameters
of the arbitrary anisotropic objects simultaneously. The results
are shown in Fig. 4. We can see that the cubic shape of the
cube clearly shows up. In addition, the dielectric parameters
of both objects approach the ground truth.

Fig. 5 shows the reconstructed 12 dielectric parameters of
the arbitrary anisotropic objects by using the direct VBIM
inversion. By comparing with the inversion results shown
in Fig. 4, we made three observations. First, the shape of
the cube is not well reconstructed by the direct inversion.
This is because the inversion domain is fixed in the direct
inversion but is effectively downsized in the cascading scheme.
As a result, the underdetermination of the inverse problem is
severe for the direct inversion but is mitigated in the cascading
scheme. Second, the dielectric parameters obtained by the
direct inversion are less than the ground-truth values. Since the
shapes of the objects are not constrained in the direct inversion,
the reconstructed volumes of the objects are usually larger than
their true volumes. Consequently, the values of the inverted
model parameters become less than the true values. Finally,
the quantitative fit between reconstructed profiles and true
profiles is measured by the structural similarity (SSIM) index
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Fig. 4. Reconstructed arbitrary anisotropic profiles by the cascading scheme. (a)–(f) Permittivities. (g)–(l) Conductivities.

Fig. 5. Reconstructed arbitrary anisotropic profiles by the direct inversion. (a)–(f) Permittivities. (g)–(l) Conductivities.

TABLE II

SSIMS BETWEEN RECONSTRUCTED PARAMETERS AND GROUND TRUTHS BASED ON TWO INVERSION METHODS

presented in [16]. The SSIM values for the cascading scheme
are roughly 0.1 larger than those for the direct inversion. The
details are listed in Table II.

Fig. 6 shows the comparisons of typical 3-D isosurfaces
of the reconstructed profiles. The cubic shapes are clearly

displayed for the inversion by the cascading scheme. Another
observation is that the volume of the sphere in the isosur-
face plots is smaller for the direct inversion than that for
the inversion by the cascading scheme. This is because the
reconstructed dielectric parameter values are smaller in the
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Fig. 6. 3-D isosurface plots of typical reconstructed dielectric parameters.
(a) ε11 by the cascading scheme. (b) ε11 by the direct inversion. (c) σ12 by
the cascading scheme. (d) σ12 by the direct inversion. The isovalue is 2.2 for
ε11 and 0.3 mS/m for σ12.

Fig. 7. Comparison of the cascading scheme and the direct inversion in
different iteration steps. (a) Convergence curves. (b) Computational time for
BCGS-FFT and assembling the matrix and CG in VBIM.

Fig. 8. 2-D slices at y = 0 of the reconstructed σ23 for different noise levels.
(a) 30 dB. (b) 20 dB. (c) 10 dB.

direct inversion. Fig. 7(a) shows the convergence curves of
the cascading scheme and the direct inversion. We can see that
there is no big difference between the two methods. However,
the computational cost is obviously different, as is shown
in Fig. 7(b). Because the inversion domain is compressed in the
cascading scheme, the computational time for assembling the
Fréchet derivative matrix and the conjugate gradient (CG) in
the VBIM [14] is significantly lowered. However, the forward
computation time has no obvious difference for the two
schemes since the computation domain remains the same in
all iterations for the forward BCGS solver.

C. Antinoise Test

We then test the inversion performance of the proposed
cascading scheme when 30-, 20-, and 10-dB noises are used
to contaminate the measured fields. Here, the noise level
is defined according to the signal-to-noise ratio (SNR) of
power. Due to space limitation, only the 2-D slices of the
reconstructed σ23 profiles for different noise levels are shown
in Fig. 8. We can see that the cascading scheme shows good
robustness to noise. Even when the 10-dB noise is added, two
reconstructed objects are discernible although the shapes are
distorted and the values deviate away from the ground truth.

IV. CONCLUSION

In this work, three inverse solvers are sequentially cascaded
together to reconstruct the 3-D arbitrary anisotropic objects.
The computational cost is lowered because the inversion
domain is downsized for the biaxial anisotropic inverse solver
and the arbitrary anisotropic one. The reconstruction accu-
racy is enhanced since the ill-posedness of the inversion is
effectively alleviated. In addition, the antinoise ability of the
proposed cascading scheme is also justified. The future work
will focus on the inversion of field measured data based on
the cascading scheme.
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